
WebAssembly Is All You Need:
Exploiting Chrome and the
V8 Sandbox 10+ times with WASM

Seunghyun Lee (@0x10n)
Carnegie Mellon University

$ whoami

● First-year PhD student @ CMU CSD / CyLab

● (Former) Research intern @ KAIST Hacking Lab

● Occasional CTF player as PPP, KAIST GoN

2

Seunghyun Lee,
a.k.a Xion (@0x10n)

Carnegie Mellon University

$ whoami

● First-year PhD student @ CMU CSD / CyLab

● (Former) Research intern @ KAIST Hacking Lab

● Occasional CTF player as PPP, KAIST GoN

● Independent vulnerability researcher as a hobby

○ Winner of Pwn2Own Vancouver 2024:
- Chrome renderer + Chrome/Edge renderer double-tap

○ Winner of TyphoonPWN 2024:
- Chrome renderer

○ Google kernelCTF & v8CTF enjoyer:
- Q: How many 0-days in a single Chrome milestone?

3

Seunghyun Lee,
a.k.a Xion (@0x10n)

Carnegie Mellon University

Why this talk?

● Finding and exploiting browser bugs are “hard”?

○ What is it that makes it “hard”?

○ How can we make it easier as an attacker?

■ How can we make it harder as a defender?

4

Why this talk?

● Finding and exploiting browser bugs are “hard”?

○ What is it that makes it “hard”?

○ How can we make it easier as an attacker?

■ How can we make it harder as a defender?

● Lack of publicly available information on vulnerability research

○ Not a lot of discussions on bleeding-edge vulnerabilities (and understandably so)

■ kernelCTF requires exploit to be published in detail, v8CTF does not? 🤷
○ Publicize knowledge & insights to collectively advance vulnerability research

5

Agenda

● The Prequel: CVE-2024-2887
○ WasmGC type system

● The Lore: Speedrunning TyphoonPWN with variant analysis
○ Isorecursive type system in WasmGC

● “Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
○ The wasm::ValueType Trinity

● The Sequel: CVE-2024-9859

● Typos Gone Wild: CVE-2024-6779

● “All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

● Going Forward: Other browsers & future targets

● Conclusions & Takeaways
6

Agenda

● The Prequel: CVE-2024-2887
○ WasmGC type system

● The Lore: Speedrunning TyphoonPWN with variant analysis
○ Isorecursive type system in WasmGC

● “Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
○ The wasm::ValueType Trinity

● The Sequel: CVE-2024-9859

● Typos Gone Wild: CVE-2024-6779

● “All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

● Going Forward: Other browsers & future targets

● Conclusions & Takeaways
7

Agenda

● The Prequel: CVE-2024-2887
○ WasmGC type system

● The Lore: Speedrunning TyphoonPWN with variant analysis
○ Isorecursive type system in WasmGC

● “Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
○ The wasm::ValueType Trinity

● The Sequel: CVE-2024-9859

● Typos Gone Wild: CVE-2024-6779

● “All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

● Going Forward: Other browsers & future targets

● Conclusions & Takeaways
8

The Prequel: CVE-2024-2887

9

The Prequel: CVE-2024-2887

10
https://www.zerodayinitiative.com/blog/2024/5/2/cve-2024-2887-a-pwn2own-winning-bug-in-google-chrome

The Prequel: CVE-2024-2887

● Presented by Manfred Paul (@_manfp) at Pwn2Own Vancouver 2024

● TL;DR: Universal Wasm type confusion due to missing type count check

○ So what is a “Wasm type”?

11

WasmGC type system

● WASM modules may contain type section, a list of module-defined heap types

○ Base Spec: func

○ WasmGC Extension: struct, array, …

● Each module-defined heap types has its own type index

○ The order of their appearance in the type section is its type index

● WASM modules can have at most kV8MaxWasmTypes defined heap types

12

WasmGC type system

● WASM also supports recursive types within a “recursion group” rectype

● rectype can contain multiple subtype members

○ Each members are assigned a separate type index, but not to rectype itself

13

WasmGC type system

● Type index example:

14

0

1

2

3

4

The Prequel: CVE-2024-2887

15

● (L) For recursive type groups, type count limit is checked

● (R) For “standalone” types, limit is not checked???

○ types_count bounded above by kV8MaxWasmTypes, but this includes rectypes

The Prequel: CVE-2024-2887

16

● Case 1: Max type count exceeded within a recursive group

The Prequel: CVE-2024-2887

17

0 ~ 999999

1000000

● Case 2: Max type count exceeded with a standalone type

The Prequel: CVE-2024-2887

18

0 ~ 999999

1000000

● How is this exploitable? It’s just a resource exhaustion “bug”?

○ Generic heap types to the rescue!

The Prequel: CVE-2024-2887

19

WasmGC type system

20

● What are generic heap types?

○ any: Top type of all internal non-function type (i.e. supertype of all internal type)

■ “Internal” in WASM perspective

○ none: Bottom type of all internal non-function type (i.e. subtype of all internal type)

WasmGC type system

21

● What are generic heap types?

○ any: Top type of all internal non-function type (i.e. supertype of all internal type)

■ “Internal” in WASM perspective

○ none: Bottom type of all internal non-function type (i.e. subtype of all internal type)

○ func: Top type of all function type

○ nofunc: Bottom type of all function type

WasmGC type system

22

● What are generic heap types?

○ any: Top type of all internal non-function type (i.e. supertype of all internal type)

■ “Internal” in WASM perspective

○ none: Bottom type of all internal non-function type (i.e. subtype of all internal type)

○ func: Top type of all function type

○ nofunc: Bottom type of all function type

○ extern: Top type of all external type

■ “External” in WASM perspective, i.e. JS objects

○ noextern: Bottom type of all external type

○ …

The Prequel: CVE-2024-2887

23

● Key idea for the exploit:

○ Any concrete struct type is a supertype of none

○ An object can be casted to its supertype object

■ Upcast, statically type-checked

○ What happens if, with this bug, a concrete heap type index aliases with kNone?

■ Object can be casted to any other type???

The Prequel: CVE-2024-2887

24

1. Create the following two types:

Goal: Type confusion of arbitrary field type src -> dst

The Prequel: CVE-2024-2887

25

1. Create the following two types:

Goal: Type confusion of arbitrary field type src -> dst

2. Push value of type src

=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc

=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc

The Prequel: CVE-2024-2887

26

=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc = ref none

The Prequel: CVE-2024-2887

27

=> Stack: ref $tSrc = ref none

4. Type cast to ref $tDst

a. ref none <: ref $tDst => static upcast, runtime typecheck elided

The Prequel: CVE-2024-2887

28

=> Stack: ref $tSrc = ref none

4. Type cast to ref $tDst

=> Stack: ref $tDst

5. Get field of type dst from ref $tDst

=> Stack: dst

The Prequel: CVE-2024-2887

29

The Prequel: CVE-2024-2887

30

1. Create the following two types:

2. Push value of type src

=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc = ref none

4. Type cast to ref $tDst

=> Stack: ref $tDst

5. Get field of type dst from ref $tDst

=> Stack: dst

● Result: Type confusion from src to dst

○ “Universal” Wasm type confusion between arbitrary types!

● Immediately acquire all JS exploit primitives:

○ ref extern -> i32

■ addrOf()

○ i32 -> ref extern

■ fakeObj()

○ i32 -> ref (struct (field i32))

■ Arbitrary (caged) read/write

The Prequel: CVE-2024-2887

31

The Lore:
Speedrunning TyphoonPWN with variant analysis

32

The Lore: Speedrunning TyphoonPWN with variant analysis

● May 27: Boredom exceeded the procrastination threshold

● May 30: TyphoonPWN 2024*

33
* Organized by SSD Secure Disclosure.

The Lore: Speedrunning TyphoonPWN with variant analysis

● May 27: Boredom exceeded the procrastination threshold

● May 30: TyphoonPWN 2024*

● 3-day Chrome renderer exploit speedrun

34
* Organized by SSD Secure Disclosure.

(Not a) real footage of me going through source.chromium.org

The Lore: Speedrunning TyphoonPWN with variant analysis

● Opened Chromium Code Search, but where should I look at?

● Recall: I have very limited time

○ I need an approach to find and exploit browser bugs in an “easy” way

35

May 27, 15:00
 source.chromium.org

May 30, 09:00
TyphoonPWN 2024

The Lore: Speedrunning TyphoonPWN with variant analysis

● How to find and exploit bugs “easily”, in the fastest way possible?

○ Not enough time to spend on stabilizing bugs / exploits

⇒ Target bug classes that grant stable, powerful primitives

● Target code that previously have been exploited with such bug classes

36

The Lore: Speedrunning TyphoonPWN with variant analysis

● How to find and exploit bugs “easily”, in the fastest way possible?

○ Not enough time to spend on stabilizing bugs / exploits

⇒ Target bug classes that grant stable, powerful primitives

● Target code that previously have been exploited with such bug classes

○ Not enough time to learn intricate subsystems / implementations

⇒ Target large, complex but legible code

● Large, complex: Difficult to write & reason about for devs

● Legible: Simple enough for me to quickly understand the code base

⇒ Target code that can be easily tested & have my understanding of the code verified

37

The Lore: Speedrunning TyphoonPWN with variant analysis

● How to find and exploit bugs “easily”, in the fastest way possible?

○ Not enough time to spend on stabilizing bugs / exploits

⇒ Target bug classes that grant stable, powerful primitives

● Target code that previously have been exploited with such bug classes

○ Not enough time to learn intricate subsystems / implementations

⇒ Target large, complex but legible code

● Large, complex: Difficult to write & reason about for devs

● Legible: Simple enough for me to quickly understand the code base

⇒ Target code that can be easily tested & have my understanding of the code verified

○ Target under-examined code

38

The Lore: Speedrunning TyphoonPWN with variant analysis

● My answer: WasmGC type system implementation

○ Bugs have shown extremely strong exploitability (CVE-2024-2887)

○ The implementation is huge and complex but manageable

■ wasm-module-builder.js to the rescue!

○ Seemingly no public research on Chrome’s WasmGC type system implementation

■ E.g. What’s the result of searching “wasm isorecursive type canonicalization”?

● V8 commits

● Wasm spec discussions

● Many PL theory papers

39

The Lore: Speedrunning TyphoonPWN with variant analysis

● Where are we now?

○ Start recapping CVE-2024-2887

40

May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

The Lore: Speedrunning TyphoonPWN with variant analysis

● Standing on the shoulders of giants: Recap on CVE-2024-2887

● What is isorecursive_canonical_type_ids?

41

The Lore: Speedrunning TyphoonPWN with variant analysis

● isorecursive_canonical_type_ids:

○ isorecursive: Isorecursive type system

○ canonical_type_ids: Canonicalized representation of the types

42

Isorecursive Type Systems

● Disclaimer:

○ I will try my best to be succinct as possible

○ See A. Rossberg, “Mutually Iso-Recursive Subtyping,” in OOPSLA’23 for details

43

● Is type $t1 equivalent to type $u1?

44

0

1

2

3

4

$t1
$u1

Isorecursive Type Systems: Type Equivalence

Isorecursive Type Systems: Type Equivalence

● Is type $t1 equivalent to type $u1?

● Yes, they look the same!

● But exactly how…?

45

0

1

2

3

4

$t1
$u1

Isorecursive Type Systems: Type Equivalence

46
https://github.com/WebAssembly/gc/blob/main/proposals/gc/MVP.md

Isorecursive Type Systems: Type Equivalence

● In plain language:

○ Represent recursive type group as type tuple rec

○ Replace all recursive type variables into rec.<i>

○ Compare this replaced type to check type equivalence

● In PL terms:

○ Recursive type variable a represents rec

47

● WASM uses iso-recursive typing rules which compares the tie()’d state

● None of the tie()’d type representation below are equivalent

48

0

1

2

3

Isorecursive Type Systems: Type Equivalence

● Q: How to represent types $u{1,2} to be the same as $t{1,2}?

49

0

1

2

3

4

Isorecursive Type Systems: Canonicalization

Isorecursive Type Systems: Canonicalization

● Q: How to represent types $u{1,2} to be the same as $t{1,2}?

● A: Canonicalize the type indices into (opaque) canonical type indices!

○ Type Index / Canonical Index

● isorecursive_canonical_type_ids[module_type_idx] = canonical_type_idx

50

0/0

1/1

2/0

3/1

4/2

Isorecursive Type Systems: Subtyping

● Q: How do we know that the declared subtypes are valid?

● A: Well-known - “Amber rule”[1,2]

○ TL;DR: mutable ? (sub.i == sup.i) : (sub.i <: sup.i)

51[1] L. Cardelli, "Amber," in LITP’85.
[2] Y. Zhou, J. Zhao, B.C.D.S. Oliveira, "Revisiting Iso-Recursive Subtyping," in TOPLAS’22.

● Subtype relationship saved as canonical_supertypes_[sub] = super

● So what is all this stuff for?

52

Isorecursive Type Systems: Subtyping

● Canonical subtype check:

○ Canonicalize, then sub = canonical_supertypes_[sub] until match or end

53

Isorecursive Type Systems: Subtyping

● Canonical subtype check:

○ Canonicalize, then sub = canonical_supertypes_[sub] until match or end

○ Used for subtype check between module-defined reference types:

54

Isorecursive Type Systems: Subtyping

“Deja Vu”: CVE-2024-6100
@ TyphoonPWN 2024

55

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Enough with the background - let’s find the bug

56

May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Enough with the background - let’s find the bug

● Idea 1: uint32_t canonical index overflow

○ Effect: Overlapping canonical index, universal WASM type confusion

○ In reality: Requires ~200GB memory at minimum due to overheads

57

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Enough with the background - let’s find the bug

● Idea 1: uint32_t canonical index overflow

○ Effect: Overlapping canonical index, universal WASM type confusion

○ In reality: Requires ~200GB memory at minimum due to overheads

● Idea 2: Confusion between canonical type index vs. module type index?

1. Two distinct ways to represent types, where both are just plain integers

2. Canonical type index NOT bound by kV8MaxWasmTypes

58

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Check xrefs on relevant functions & data structures

59

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

60

● Object typechecks at JS-to-WASM boundary (for reference types)

● We construct a ValueType::RefMaybeNull() out of a canonical_index

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

61

● ValueType passed down to JSToWasmObject():

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

62

● ValueType passed down to JSToWasmObject():

○ Fetching the canonical index back from ValueType?

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

63

● ValueType passed down to JSToWasmObject():

○ Canonical index is stored in HeapType, a 20-bit wide bitfield! (220 = 1,048,576)

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

64

● ValueType passed down to JSToWasmObject():

○ Canonical index is stored in HeapType, a 20-bit wide bitfield! (220 = 1,048,576)

● 20 bits?

○ Enough to store all valid module-specific HeapTypes:

■ Type indices: 0 ~ 999,999 (= kV8MaxWasmTypes - 1)

■ Generic heap types: 1,000,000 ~ 1,000,0xx

■ Internal types (invalid): 1,000,0xx + 1 (kBottom)

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

65

● ValueType passed down to JSToWasmObject():

○ Canonical index is stored in HeapType, a 20-bit wide bitfield! (220 = 1,048,576)

● 20 bits?

○ Enough to store all valid module-specific HeapTypes:

■ Type indices: 0 ~ 999,999 (= kV8MaxWasmTypes - 1)

■ Generic heap types: 1,000,000 ~ 1,000,0xx

■ Internal types (invalid): 1,000,0xx + 1 (kBottom)

○ NOT enough to store canonical type indices!

■ Canonical type indices: uint32_t, bounded only by host memory limits

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

66

May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

67

● Bug #1: Canonical type index truncated to 20 bits!

● Effect: Broken typecheck on JS-to-Wasm boundary, where:

○ Intended: Typecheck against ref T, where t = (n<<20) + k (0 <= k < 1E6)

○ Actual: Typecheck against ref K for type K with canonical type index k

● Result: Universal WASM type confusion K -> T

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

68

● What if t = (n<<20) + k (1E6 <= k < 220), i.e. a generic type index?

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

69

● Bug #2: Canonical type index confused as generic HeapType!

○ As generic HeapTypes use the same ValueType, this is indistinguishable from the

very moment we use ValueType to store canonical type indices

● Effect: Broken typecheck on JS-to-Wasm boundary, where:

○ Intended: Typecheck against ref T, where t = (n << 20) + kAny

○ Actual: Typecheck against ref any

● Result: Universal WASM type confusion any -> T

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

70

May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”

May 28, 01:30
💥 Segfault

May 28, 03:30
📝 RCA complete

● In-sandbox exploit? Exactly same as CVE-2024-2887

○ Arbitrary caged RW, addrOf(), fakeObj() primitives instantly acquired

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

71

May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”

May 28, 01:30
💥 Segfault

May 28, 03:30
📝 RCA complete

May 28, 06:10
🚀 Caged AAR/W

● In-sandbox exploit? Exactly same as CVE-2024-2887

○ Arbitrary caged RW, addrOf(), fakeObj() primitives instantly acquired

● V8 sandbox escape? Just Use PartitionAlloc™

○ Common misconception that V8 sandbox has no raw pointers – not with PA!

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

72

May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”

May 28, 01:30
💥 Segfault

May 28, 03:30
📝 RCA complete

May 28, 06:10
🚀 Caged AAR/W

May 28, 12:20
🐚 Popped shell

● Fun fact: Fuzzers hit this bug repeatedly (as a DCHECK)

○ But none of the reporters nor devs were able to repro it (b/323856491)

○ The assumption is wrong – Wasm module creation is NOT side-effect free!

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

73

● Note how this isn’t a one-off bug – it’s a huge design issue

The wasm::ValueType Trinity

74

wasm::
ValueType

Is Is

Is

Canonical
Type

Is Not

Is Not Is
No

t

Module
#2 Type

Module
#1 Type

The Sequel: CVE-2024-9859
(v8CTF M126, later found ITW)

75

The Sequel: CVE-2024-9859

76

● CVE-2024-6100: canonical index → module-specific index confusion

● Other way around – module-specific index → canonical index??

The Sequel: CVE-2024-9859

77

78

The Sequel: CVE-2024-9859

The Sequel: CVE-2024-9859

79

1. Wasm module exports exception signature (i.e. Tag) with module-specific types

The Sequel: CVE-2024-9859

80

1. Wasm module exports exception signature (i.e. Tag) with module-specific types

2. An exception is created with WebAssembly.Exception() with the export tag

○ Typechecked with module-specific index → canonical index confusion

The Sequel: CVE-2024-9859

81

1. Wasm module exports exception signature (i.e. Tag) with module-specific types

2. An exception is created with WebAssembly.Exception() with the export tag

○ Typechecked with module-specific index → canonical index confusion

3. Catch the exception within Wasm to unpack values as module-specific types

4. 🐚

The Sequel: CVE-2024-9859

82

● Q: How did this go unknown? Where are the unit tests??

● A: Simple, those tests don’t use WasmGC types

○ Different feature extension proposal: Garbage Collection vs. Exception Handling

○ Lack of integration tests between feature extensions

● Type confusion, two ways

The wasm::ValueType Trinity

83

wasm::
ValueType

Is Is

Is

Canonical
Type

Is Not

Is Not Is
No

t

Module
#2 Type

Module
#1 Type

CVE-2024-9859CVE-2024-6100

● Type confusion, all ways (and not just once!)

The wasm::ValueType Trinity

84

wasm::
ValueType

Is Is

Is

Canonical
Type

Is Not

Is Not Is
No

t

Module
#2 Type

Module
#1 Type

CVE-2024-6100 CVE-2024-9859

CVE-2024-10230

CVE-2024-8194

Note that these are only the bugs that I have found || exploited.

Typos Gone Wild: CVE-2024-6779

85

Typos Gone Wild: CVE-2024-6779

86

● A short trip to Wasm Turbofan implementation to find other truncation issues

○ Caching logic for last accessed memory base & size

Typos Gone Wild: CVE-2024-6779

87

● A short trip to Wasm Turbofan implementation to find other truncation issues

○ Caching logic for last accessed memory base & size

Typos Gone Wild: CVE-2024-6779

88

● Cached memory index confusion

1. Access memory index 0x100

2. Access memory index 0 (== static_cast<uint8_t>(0x100))

■ Accessed using cached memory base & length of memory index 0x100

● But if offset check is all done purely dynamically, this won’t be a problem…?

Typos Gone Wild: CVE-2024-6779

89

● Optimization – if offset & index is known & statically in-bounds, elide check

Typos Gone Wild: CVE-2024-6779

90

● Optimization #2 – if offset <= min size, elide mem size comparison

○ Remaining size effective_size subtraction overflow!

<= Cached size of memory[0x100]

<= Min size of memory[0]

Typos Gone Wild: CVE-2024-6779

91

● Great, arbitrary index OOB read/write from Wasm memory base :)

● Exploitable?

Typos Gone Wild: CVE-2024-6779

92

● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

● Exploitable? Unexploitable??

Typos Gone Wild: CVE-2024-6779

93

● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

=> With memory64, this is uint64 – fully arbitrary R/W, but the feature is staged…

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

=> On Android, no guard page due to signal safety issues

● Exploitable? Unexploitable?? Exploitable???

Typos Gone Wild: CVE-2024-6779

94

● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

=> With memory64, this is uint64 – fully arbitrary R/W, but the feature is staged…

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

=> On Android, no guard page due to signal safety issues

=> But there’s nothing useful to overwrite?

 It’s allocated after ArrayBuffer PartitionAlloc…

● Exploitable? Unexploitable?? Exploitable??? Unexploitable????

Typos Gone Wild: CVE-2024-6779

95

● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

=> With memory64, this is uint64 – fully arbitrary R/W, but the feature is staged…

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

=> On Android, no guard page due to signal safety issues

=> But there’s nothing useful to overwrite?

 It’s allocated after ArrayBuffer PartitionAlloc…

=> In “some cases”, it’s between V8 cage & ArrayBuffer PartitionAlloc!!

● Exploitable? Unexploitable?? Exploitable??? Unexploitable???? Exploitable!

Typos Gone Wild: CVE-2024-6779

96

● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

=> With memory64, this is uint64 – fully arbitrary R/W, but the feature is staged…

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

=> On Android, no guard page due to signal safety issues

=> But there’s nothing useful to overwrite?

 It’s allocated after ArrayBuffer PartitionAlloc…

=> In “some cases”, it’s between V8 cage & ArrayBuffer PartitionAlloc!!

● Exploitable? Unexploitable?? Exploitable??? Unexploitable???? Exploitable!

Typos Gone Wild: CVE-2024-6779

97

● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

Man Yue Mo, “Controlled chaos: Predicting object addresses in Chrome (without breaking a sweat),” in POC2022.
* Fixed in https://crrev.com/c/5806587

Typos Gone Wild: CVE-2024-6779

98

● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

○ Both the V8 Sandbox & V8 cage is allocated with alignment of 4GiB

○ ArrayBuffer PartitionAlloc pool is allocated with alignment of 16GiB

Typos Gone Wild: CVE-2024-6779

99

● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

○ Both the V8 Sandbox & V8 cage is allocated with alignment of 4GiB

○ ArrayBuffer PartitionAlloc pool is allocated with alignment of 16GiB

● 75% chance to have a gap between the V8 cage & PartitionAlloc

○ This gap can be reclaimed with Wasm memory!

○ On any cases, we can probe the layout & determine exploitability w/o crashing

V8 Cage 4GiB Gap? 4GiB Gap? 4GiB Gap? ArrayBuffer PartitionAlloc

Typos Gone Wild: CVE-2024-6779

100

● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

○ Both the V8 Sandbox & V8 cage is allocated with alignment of 4GiB

○ ArrayBuffer PartitionAlloc pool is allocated with alignment of 16GiB

● 75% chance to have a gap between the V8 cage & PartitionAlloc

○ This gap can be reclaimed with Wasm memory!

○ On any cases, we can probe the layout & determine exploitability w/o crashing

■ Fill up each potential 4GiB (+1) with Wasm memory, OOB read to probe if it’s before PA

V8 Cage wmem1 wmem2 wmem3 ArrayBuffer PartitionAlloc

Typos Gone Wild: CVE-2024-6779

101

● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

○ Both the V8 Sandbox & V8 cage is allocated with alignment of 4GiB

○ ArrayBuffer PartitionAlloc pool is allocated with alignment of 16GiB

● 75% chance to have a gap between the V8 cage & PartitionAlloc

○ This gap can be reclaimed with Wasm memory!

○ On any cases, we can probe the layout & determine exploitability w/o crashing

■ Fill up each potential 4GiB (+1) with Wasm memory, OOB read to probe if it’s before PA

V8 Cage wmem1 wmem2 wmem3ArrayBuffer PartitionAlloc

Typos Gone Wild: CVE-2024-6779

102

● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

○ Both the V8 Sandbox & V8 cage is allocated with alignment of 4GiB

○ ArrayBuffer PartitionAlloc pool is allocated with alignment of 16GiB

● 75% chance to have a gap between the V8 cage & PartitionAlloc

○ This gap can be reclaimed with Wasm memory!

○ On any cases, we can probe the layout & determine exploitability w/o crashing

■ Fill up each potential 4GiB (+1) with Wasm memory, OOB read to probe if it’s before PA

wmem1 wmem2 wmem3ArrayBuffer PartitionAlloc wmem4

“All-You-Can-Eat”
Wasm-based V8 Sandbox bypasses

103

Crash Course on V8 Sandbox

104

● V8 Sandbox:

○ Software fault isolation mechanism to prevent memory corruptions from within the

sandbox region evolving into arbitrary writes outside of sandbox

Crash Course on V8 Sandbox

105

● V8 Sandbox:

○ Software fault isolation mechanism to prevent memory corruptions from within the

sandbox region evolving into arbitrary writes outside of sandbox

Samuel Groß, “The V8 Heap Sandbox,” in OffensiveCon 2024.

Crash Course on V8 Sandbox

106
Samuel Groß, “The V8 Heap Sandbox,” in OffensiveCon 2024.

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

107

● Wasm is a goldmine of V8 Sandbox bypasses

○ What makes it so vulnerable?

○ What are the common patterns?

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

108

● Wasm is a goldmine of V8 Sandbox bypasses

○ What makes it so vulnerable?

○ What are the common patterns?

● Key idea:

○ Reference types are represented as full 64bit pointers at:

■ Within a Wasm function

■ Across Wasm function calls – function signature confusion leads to v8sbx bypass!

○ Everything is an object – memory, funcrefs, function tables, etc.

■ Anything that could be modified must not be trusted

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

109

● Wasm is a goldmine of V8 Sandbox bypasses

○ What makes it so vulnerable?

○ What are the common patterns?

● Key idea:

○ Reference types are represented as full 64bit pointers at:

■ Within a Wasm function

■ Across Wasm function calls – function signature confusion leads to v8sbx bypass!

○ Everything is an object – memory, funcrefs, function tables, etc.

■ Anything that could be modified must not be trusted

○ The paradigm shift: V8 sandbox & JS is “userspace”, everything else “kernel”

■ We need to reason about “non-renderer issues” – “double fetch” within v8sbx?

■ “Drivers”, i.e. embedder implementations, which is difficult to reason about from V8

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

110

● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

Classification referenced from Samuel Groß’s “The V8 Heap Sandbox” talk. Some fields are implicitly omitted in the diagram.

WasmTableObject

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

111

● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

Classification referenced from Samuel Groß’s “The V8 Heap Sandbox” talk. Some fields are implicitly omitted in the diagram.

WasmTableObject

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable

length capacity

entry[0].target entry[0].ref

entry[0].sig …

Invariant: entry[i].sig <: table type

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

112

● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

Classification referenced from Samuel Groß’s “The V8 Heap Sandbox” talk. Some fields are implicitly omitted in the diagram.

WasmTableObject

entries current_length

maximum_length uses

raw_type? …

FixedArray

length object[0]?

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable

length capacity

entry[0].target entry[0].ref

entry[0].sig …

Invariant: entry[i].sig <: table type

● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

○ b/350292240: Generic func table runtime typecheck bypass via type info corruption

■ Unfixed, but public as part of exploit chain for “Typos Gone Wild: CVE-2024-6779”

○ b/352689356: Missing signature SBXCHECK() in Turbofan call_ref – wontfix’d

■ Wasm Turbofan expected to be obsolete Soon™

○ b/354408144: Wasm-to-JS wrapper serialized signature corruption

■ Trusted-to-untrusted reference

○ b/354355045: JS-to-Wasm sbxcheck() bypass

■ Trusted|Untrusted type union, fallback to fake untrusted object

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

113

● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

114
Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

115
Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

116
Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

117
Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries 0xfffffffe

0xfffffffe uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

1 capacity

entry[0].target entry[0].ref

entry[0].sig …

table.set(0xfffffff9, func)

● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

○ b/350628675: OOB access from a ProtectedFixedArray

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

118

● Case 3: Broken invariants

○ Similar to what we’ve seen in “Typos Gone Wild: CVE-2024-6779”

● Case 4: Transplantation* / Extraction of trusted handles

○ Replacing / removing references to trusted objects

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

119
* Bochin et al. refers to the transplantation technique as “Field Confusion”.

● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

120

WasmExportedFunction F

… shared_function_info

WasmExportedFunctionData F

… canonical_type_index

… …

WasmDispatchTable (imports)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

SharedFunctionInfo F

trusted_function_data …

● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

121

WasmExportedFunction F

… shared_function_info

WasmExportedFunctionData F

… canonical_type_index

… …

WasmDispatchTable (imports)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

SharedFunctionInfo F

trusted_function_data …

WasmExportedFunction G

… shared_function_info

WasmExportedFunctionData G

… canonical_type_index

… …

SharedFunctionInfo G

trusted_function_data …

MatchesSignature()

● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

122

WasmExportedFunction F

… shared_function_info

WasmExportedFunctionData F

… canonical_type_index

… …

WasmDispatchTable (imports)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

SharedFunctionInfo F

trusted_function_data …

WasmExportedFunction G

… shared_function_info

WasmExportedFunctionData G

… canonical_type_index

… …

SharedFunctionInfo G

trusted_function_data …

MatchesSignature()SetWasmToWasm()

● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

○ Case 3’ – b/352446085: Wasm memory64 bounds check bypass via import race

■ Also seen in “Typos Gone Wild: CVE-2024-6779”

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

123

● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

○ Case 3’ – b/352446085: Wasm memory64 bounds check bypass via import race

■ Also seen in “Typos Gone Wild: CVE-2024-6779”

● Bugs from new feature extensions?

○ Case 4 – b/356419168: Arbitrary Wasm stack control via JSPI continuation transplant

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

124

Going Forward:
Other browsers & future targets

125

● Firefox?

○ Blatantly wrong subtype validity check for array types: CVE-2024-8385

■ Any array types with different mutability are a subtype of each other??

Going Forward: Other browsers

126

● Firefox?

○ Blatantly wrong subtype validity check for array types: CVE-2024-8385

■ Any array types with different mutability are a subtype of each other??

● Safari?

○ WasmGC enabled by default from STP202 – still has a long way to go

■ Many bugs, from obvious type safety violations to JIT compiler bugs: CVE-2024-44221

Going Forward: Other browsers

127

● WebAssembly is rapidly expanding:

○ Exception handling with exnref

■ Adds a whole new type hierarchy!

○ JSPI (JS Promise Integration)

■ You can now suspend/resume Wasm functions mid-execution!

○ Memory64

■ Memory/table indices can now be 64bit!

○ … and many more

Going Forward: Future targets

128

● WebAssembly is rapidly expanding:

○ Exception handling with exnref

■ Adds a whole new type hierarchy!

○ JSPI (JS Promise Integration)

■ You can now suspend/resume Wasm functions mid-execution!

○ Memory64

■ Memory/table indices can now be 64bit!

○ … and many more

● Chrome is growing too:

○ Transition from Turbofan to Turboshaft

■ Already transitioning via V8WasmTurboshaft Finch trial (currently at 50%)

Going Forward: Future targets

129

Conclusions & Takeaways

130

● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)

Conclusions & Takeaways

131

● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)

● Not all bugs are created equal

○ Bugs in Wasm is generally “easier” to write an end-to-end exploit

■ “Easy”: Stable, deterministic, straightforward, …

○ Once you have your exploit framework, just “plug-and-play” new bugs

Conclusions & Takeaways

132

● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)

● Not all bugs are created equal

○ Bugs in Wasm is generally “easier” to write an end-to-end exploit

■ “Easy”: Stable, deterministic, straightforward, …

○ Once you have your exploit framework, just “plug-and-play” new bugs

● Everything (well, most of them) is exploitable if you look closely enough

Conclusions & Takeaways

133

● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)

● Not all bugs are created equal

○ Bugs in Wasm is generally “easier” to write an end-to-end exploit

■ “Easy”: Stable, deterministic, straightforward, …

○ Once you have your exploit framework, just “plug-and-play” new bugs

● Everything (well, most of them) is exploitable if you look closely enough

● V8 Sandbox is still not a meaningful security boundary (yet)

○ Is the (mediocre) difficulty increase worth the (large, recurring) engineering cost?

Conclusions & Takeaways

134

● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)

● Not all bugs are created equal

○ Bugs in Wasm is generally “easier” to write an end-to-end exploit

■ “Easy”: Stable, deterministic, straightforward, …

○ Once you have your exploit framework, just “plug-and-play” new bugs

● Everything (well, most of them) is exploitable if you look closely enough

● V8 Sandbox is still not a meaningful security boundary (yet)

○ Is the (mediocre) difficulty increase worth the (large, recurring) engineering cost?

● Automated testing often fails to catch up with new features

○ … which means there’s much more to take a look at!

Conclusions & Takeaways

135

● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)

● Not all bugs are created equal

○ Bugs in Wasm is generally “easier” to write an end-to-end exploit

■ “Easy”: Stable, deterministic, straightforward, …

○ Once you have your exploit framework, just “plug-and-play” new bugs

● Everything (well, most of them) is exploitable if you look closely enough

● V8 Sandbox is still not a meaningful security boundary (yet)

○ Is the (mediocre) difficulty increase worth the (large, recurring) engineering cost?

● Automated testing often fails to catch up with new features

○ … which means there’s much more to take a look at!

Conclusions & Takeaways

136

Thank You!
Questions?

