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$ whoami

● First-year PhD student @ CMU CSD / CyLab

● (Former) Research intern @ KAIST Hacking Lab

● Occasional CTF player as PPP, KAIST GoN

● Independent vulnerability researcher as a hobby

○ Winner of Pwn2Own Vancouver 2024:
- Chrome renderer + Chrome/Edge renderer double-tap

○ Winner of TyphoonPWN 2024:
- Chrome renderer

○ Google kernelCTF & v8CTF enjoyer:
- Q: How many 0-days in a single Chrome milestone?
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Why this talk?

● Finding and exploiting browser bugs are “hard”?

○ What is it that makes it “hard”?

○ How can we make it easier as an attacker?

■ How can we make it harder as a defender?
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Why this talk?

● Finding and exploiting browser bugs are “hard”?

○ What is it that makes it “hard”?

○ How can we make it easier as an attacker?

■ How can we make it harder as a defender?

● Lack of publicly available information on vulnerability research

○ Not a lot of discussions on bleeding-edge vulnerabilities (and understandably so)

■ kernelCTF requires exploit to be published in detail, v8CTF does not? 🤷
○ Publicize knowledge & insights to collectively advance vulnerability research
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● The Prequel: CVE-2024-2887
○ WasmGC type system
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● “Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
○ The wasm::ValueType Trinity

● The Sequel: CVE-2024-9859

● Typos Gone Wild: CVE-2024-6779

● “All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

● Going Forward: Other browsers & future targets

● Conclusions & Takeaways
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The Prequel: CVE-2024-2887
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The Prequel: CVE-2024-2887
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The Prequel: CVE-2024-2887

● Presented by Manfred Paul (@_manfp) at Pwn2Own Vancouver 2024

● TL;DR: Universal Wasm type confusion due to missing type count check

○ So what is a “Wasm type”?
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WasmGC type system

● WASM modules may contain type section, a list of module-defined heap types

○ Base Spec: func

○ WasmGC Extension: struct, array, …

● Each module-defined heap types has its own type index

○ The order of their appearance in the type section is its type index

● WASM modules can have at most kV8MaxWasmTypes defined heap types
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WasmGC type system

● WASM also supports recursive types within a “recursion group” rectype

● rectype can contain multiple subtype members

○ Each members are assigned a separate type index, but not to rectype itself
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WasmGC type system

● Type index example:
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The Prequel: CVE-2024-2887
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● (L) For recursive type groups, type count limit is checked

● (R) For “standalone” types, limit is not checked???

○ types_count bounded above by kV8MaxWasmTypes, but this includes rectypes

The Prequel: CVE-2024-2887
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● Case 1: Max type count exceeded within a recursive group

The Prequel: CVE-2024-2887
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● Case 2: Max type count exceeded with a standalone type

The Prequel: CVE-2024-2887
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● How is this exploitable? It’s just a resource exhaustion “bug”?

○ Generic heap types to the rescue!

The Prequel: CVE-2024-2887
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WasmGC type system
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● What are generic heap types?

○ any: Top type of all internal non-function type (i.e. supertype of all internal type)

■ “Internal” in WASM perspective

○ none: Bottom type of all internal non-function type (i.e. subtype of all internal type)



WasmGC type system
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WasmGC type system
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● What are generic heap types?

○ any: Top type of all internal non-function type (i.e. supertype of all internal type)

■ “Internal” in WASM perspective

○ none: Bottom type of all internal non-function type (i.e. subtype of all internal type)

○ func: Top type of all function type

○ nofunc: Bottom type of all function type

○ extern: Top type of all external type

■ “External” in WASM perspective, i.e. JS objects

○ noextern: Bottom type of all external type

○ …



The Prequel: CVE-2024-2887
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● Key idea for the exploit:

○ Any concrete struct type is a supertype of none

○ An object can be casted to its supertype object

■ Upcast, statically type-checked

○ What happens if, with this bug, a concrete heap type index aliases with kNone?

■ Object can be casted to any other type???



The Prequel: CVE-2024-2887
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1. Create the following two types:

Goal: Type confusion of arbitrary field type src -> dst
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1. Create the following two types:

Goal: Type confusion of arbitrary field type src -> dst

2. Push value of type src

=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc



=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc

The Prequel: CVE-2024-2887
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=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc = ref none

The Prequel: CVE-2024-2887
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=> Stack: ref $tSrc = ref none

4. Type cast to ref $tDst

a. ref none <: ref $tDst => static upcast, runtime typecheck elided

The Prequel: CVE-2024-2887
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=> Stack: ref $tSrc = ref none

4. Type cast to ref $tDst

=> Stack: ref $tDst

5. Get field of type dst from ref $tDst

=> Stack: dst

The Prequel: CVE-2024-2887
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1. Create the following two types:

2. Push value of type src

=> Stack: src

3. Create struct $tSrc

=> Stack: ref $tSrc = ref none

4. Type cast to ref $tDst

=> Stack: ref $tDst

5. Get field of type dst from ref $tDst

=> Stack: dst



● Result: Type confusion from src to dst

○ “Universal” Wasm type confusion between arbitrary types!

● Immediately acquire all JS exploit primitives:

○ ref extern -> i32

■ addrOf()

○ i32 -> ref extern

■ fakeObj()

○ i32 -> ref (struct (field i32))

■ Arbitrary (caged) read/write

The Prequel: CVE-2024-2887
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The Lore:
Speedrunning TyphoonPWN with variant analysis
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The Lore: Speedrunning TyphoonPWN with variant analysis

● May 27: Boredom exceeded the procrastination threshold

● May 30: TyphoonPWN 2024*

33
* Organized by SSD Secure Disclosure.



The Lore: Speedrunning TyphoonPWN with variant analysis

● May 27: Boredom exceeded the procrastination threshold

● May 30: TyphoonPWN 2024*

● 3-day Chrome renderer exploit speedrun

34
* Organized by SSD Secure Disclosure.

(Not a) real footage of me going through source.chromium.org



The Lore: Speedrunning TyphoonPWN with variant analysis

● Opened Chromium Code Search, but where should I look at?

● Recall: I have very limited time

○ I need an approach to find and exploit browser bugs in an “easy” way
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The Lore: Speedrunning TyphoonPWN with variant analysis

● How to find and exploit bugs “easily”, in the fastest way possible?

○ Not enough time to spend on stabilizing bugs / exploits

⇒ Target bug classes that grant stable, powerful primitives

● Target code that previously have been exploited with such bug classes
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The Lore: Speedrunning TyphoonPWN with variant analysis

● How to find and exploit bugs “easily”, in the fastest way possible?

○ Not enough time to spend on stabilizing bugs / exploits

⇒ Target bug classes that grant stable, powerful primitives

● Target code that previously have been exploited with such bug classes

○ Not enough time to learn intricate subsystems / implementations

⇒ Target large, complex but legible code

● Large, complex: Difficult to write & reason about for devs

● Legible: Simple enough for me to quickly understand the code base

⇒ Target code that can be easily tested & have my understanding of the code verified
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The Lore: Speedrunning TyphoonPWN with variant analysis

● How to find and exploit bugs “easily”, in the fastest way possible?

○ Not enough time to spend on stabilizing bugs / exploits

⇒ Target bug classes that grant stable, powerful primitives

● Target code that previously have been exploited with such bug classes

○ Not enough time to learn intricate subsystems / implementations

⇒ Target large, complex but legible code

● Large, complex: Difficult to write & reason about for devs

● Legible: Simple enough for me to quickly understand the code base

⇒ Target code that can be easily tested & have my understanding of the code verified

○ Target under-examined code
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The Lore: Speedrunning TyphoonPWN with variant analysis

● My answer: WasmGC type system implementation

○ Bugs have shown extremely strong exploitability (CVE-2024-2887)

○ The implementation is huge and complex but manageable

■ wasm-module-builder.js to the rescue!

○ Seemingly no public research on Chrome’s WasmGC type system implementation

■ E.g. What’s the result of searching “wasm isorecursive type canonicalization”?

● V8 commits

● Wasm spec discussions

● Many PL theory papers
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The Lore: Speedrunning TyphoonPWN with variant analysis

● Where are we now?

○ Start recapping CVE-2024-2887

40
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The Lore: Speedrunning TyphoonPWN with variant analysis

● Standing on the shoulders of giants: Recap on CVE-2024-2887

● What is isorecursive_canonical_type_ids?

41



The Lore: Speedrunning TyphoonPWN with variant analysis

● isorecursive_canonical_type_ids:

○ isorecursive: Isorecursive type system

○ canonical_type_ids: Canonicalized representation of the types

42



Isorecursive Type Systems

● Disclaimer:

○ I will try my best to be succinct as possible

○ See A. Rossberg, “Mutually Iso-Recursive Subtyping,” in OOPSLA’23 for details
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● Is type $t1 equivalent to type $u1?
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Isorecursive Type Systems: Type Equivalence

● Is type $t1 equivalent to type $u1?

● Yes, they look the same!

● But exactly how…?
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Isorecursive Type Systems: Type Equivalence
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https://github.com/WebAssembly/gc/blob/main/proposals/gc/MVP.md



Isorecursive Type Systems: Type Equivalence

● In plain language:

○ Represent recursive type group as type tuple rec

○ Replace all recursive type variables into rec.<i>

○ Compare this replaced type to check type equivalence

● In PL terms:

○ Recursive type variable a represents rec

47



● WASM uses iso-recursive typing rules which compares the tie()’d state

● None of the tie()’d type representation below are equivalent
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● Q: How to represent types $u{1,2} to be the same as $t{1,2}?
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Isorecursive Type Systems: Canonicalization

● Q: How to represent types $u{1,2} to be the same as $t{1,2}?

● A: Canonicalize the type indices into (opaque) canonical type indices!

○ Type Index / Canonical Index

● isorecursive_canonical_type_ids[module_type_idx] = canonical_type_idx

50
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Isorecursive Type Systems: Subtyping

● Q: How do we know that the declared subtypes are valid?

● A: Well-known - “Amber rule”[1,2]

○ TL;DR: mutable ? (sub.i == sup.i) : (sub.i <: sup.i)

51[1] L. Cardelli, "Amber," in LITP’85.
[2] Y. Zhou, J. Zhao, B.C.D.S. Oliveira, "Revisiting Iso-Recursive Subtyping," in TOPLAS’22.



● Subtype relationship saved as canonical_supertypes_[sub] = super

● So what is all this stuff for?

52

Isorecursive Type Systems: Subtyping



● Canonical subtype check:

○ Canonicalize, then sub = canonical_supertypes_[sub] until match or end
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Isorecursive Type Systems: Subtyping



● Canonical subtype check:

○ Canonicalize, then sub = canonical_supertypes_[sub] until match or end

○ Used for subtype check between module-defined reference types:
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“Deja Vu”: CVE-2024-6100
@ TyphoonPWN 2024
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“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Enough with the background - let’s find the bug

56

May 27, 15:00
 source.chromium.org

May 27, 17:00
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May 27, 21:30
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“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Enough with the background - let’s find the bug

● Idea 1: uint32_t canonical index overflow

○ Effect: Overlapping canonical index, universal WASM type confusion

○ In reality: Requires ~200GB memory at minimum due to overheads
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“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Enough with the background - let’s find the bug

● Idea 1: uint32_t canonical index overflow

○ Effect: Overlapping canonical index, universal WASM type confusion

○ In reality: Requires ~200GB memory at minimum due to overheads

● Idea 2: Confusion between canonical type index vs. module type index?

1. Two distinct ways to represent types, where both are just plain integers

2. Canonical type index NOT bound by kV8MaxWasmTypes
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“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024

● Check xrefs on relevant functions & data structures

59



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● Object typechecks at JS-to-WASM boundary (for reference types)

● We construct a ValueType::RefMaybeNull() out of a canonical_index



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● ValueType passed down to JSToWasmObject():



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● ValueType passed down to JSToWasmObject():

○ Fetching the canonical index back from ValueType?



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● ValueType passed down to JSToWasmObject():

○ Canonical index is stored in HeapType, a 20-bit wide bitfield! (220 = 1,048,576)



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● ValueType passed down to JSToWasmObject():

○ Canonical index is stored in HeapType, a 20-bit wide bitfield! (220 = 1,048,576)

● 20 bits?

○ Enough to store all valid module-specific HeapTypes:

■ Type indices: 0 ~ 999,999 (= kV8MaxWasmTypes - 1)

■ Generic heap types: 1,000,000 ~ 1,000,0xx

■ Internal types (invalid): 1,000,0xx + 1 (kBottom)



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● ValueType passed down to JSToWasmObject():

○ Canonical index is stored in HeapType, a 20-bit wide bitfield! (220 = 1,048,576)

● 20 bits?

○ Enough to store all valid module-specific HeapTypes:

■ Type indices: 0 ~ 999,999 (= kV8MaxWasmTypes - 1)

■ Generic heap types: 1,000,000 ~ 1,000,0xx

■ Internal types (invalid): 1,000,0xx + 1 (kBottom)

○ NOT enough to store canonical type indices!

■ Canonical type indices: uint32_t, bounded only by host memory limits



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● Bug #1: Canonical type index truncated to 20 bits!

● Effect: Broken typecheck on JS-to-Wasm boundary, where:

○ Intended: Typecheck against ref T, where t = (n<<20) + k (0 <= k < 1E6)

○ Actual: Typecheck against ref K for type K with canonical type index k

● Result: Universal WASM type confusion K -> T



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● What if t = (n<<20) + k (1E6 <= k < 220), i.e. a generic type index?



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● Bug #2: Canonical type index confused as generic HeapType!

○ As generic HeapTypes use the same ValueType, this is indistinguishable from the 

very moment we use ValueType to store canonical type indices

● Effect: Broken typecheck on JS-to-Wasm boundary, where:

○ Intended: Typecheck against ref T, where t = (n << 20) + kAny

○ Actual: Typecheck against ref any

● Result: Universal WASM type confusion any -> T



“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”

May 28, 01:30
💥 Segfault

May 28, 03:30
📝 RCA complete



● In-sandbox exploit? Exactly same as CVE-2024-2887

○ Arbitrary caged RW, addrOf(), fakeObj() primitives instantly acquired

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● In-sandbox exploit? Exactly same as CVE-2024-2887

○ Arbitrary caged RW, addrOf(), fakeObj() primitives instantly acquired

● V8 sandbox escape? Just Use PartitionAlloc™

○ Common misconception that V8 sandbox has no raw pointers – not with PA!

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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May 27, 15:00
 source.chromium.org

May 27, 17:00
🧐 v8/src/wasm/*

May 30, 09:00
TyphoonPWN 2024

May 27, 21:30
🤔 Random ideas…

May 28, 00:50
👀 “Big if true”

May 28, 01:30
💥 Segfault

May 28, 03:30
📝 RCA complete

May 28, 06:10
🚀 Caged AAR/W

May 28, 12:20
🐚 Popped shell



● Fun fact: Fuzzers hit this bug repeatedly (as a DCHECK)

○ But none of the reporters nor devs were able to repro it (b/323856491)

○ The assumption is wrong – Wasm module creation is NOT side-effect free!

“Deja Vu”: CVE-2024-6100 @ TyphoonPWN 2024
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● Note how this isn’t a one-off bug – it’s a huge design issue

The wasm::ValueType Trinity
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The Sequel: CVE-2024-9859
(v8CTF M126, later found ITW)
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The Sequel: CVE-2024-9859
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● CVE-2024-6100: canonical index → module-specific index confusion

● Other way around – module-specific index → canonical index??



The Sequel: CVE-2024-9859
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The Sequel: CVE-2024-9859
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1. Wasm module exports exception signature (i.e. Tag) with module-specific types



The Sequel: CVE-2024-9859
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1. Wasm module exports exception signature (i.e. Tag) with module-specific types

2. An exception is created with WebAssembly.Exception() with the export tag

○ Typechecked with module-specific index → canonical index confusion



The Sequel: CVE-2024-9859

81

1. Wasm module exports exception signature (i.e. Tag) with module-specific types

2. An exception is created with WebAssembly.Exception() with the export tag

○ Typechecked with module-specific index → canonical index confusion

3. Catch the exception within Wasm to unpack values as module-specific types

4. 🐚



The Sequel: CVE-2024-9859
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● Q: How did this go unknown? Where are the unit tests??

● A: Simple, those tests don’t use WasmGC types

○ Different feature extension proposal: Garbage Collection vs. Exception Handling

○ Lack of integration tests between feature extensions



● Type confusion, two ways

The wasm::ValueType Trinity
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● Type confusion, all ways (and not just once!)

The wasm::ValueType Trinity
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wasm::
ValueType

Is Is

Is

Canonical
Type

Is Not

Is Not Is 
No

t

Module
#2 Type

Module
#1 Type

CVE-2024-6100 CVE-2024-9859

CVE-2024-10230

CVE-2024-8194

Note that these are only the bugs that I have found || exploited.



Typos Gone Wild: CVE-2024-6779
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Typos Gone Wild: CVE-2024-6779
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● A short trip to Wasm Turbofan implementation to find other truncation issues

○ Caching logic for last accessed memory base & size
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● A short trip to Wasm Turbofan implementation to find other truncation issues

○ Caching logic for last accessed memory base & size



Typos Gone Wild: CVE-2024-6779
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● Cached memory index confusion

1. Access memory index 0x100

2. Access memory index 0 (== static_cast<uint8_t>(0x100))

■ Accessed using cached memory base & length of memory index 0x100

● But if offset check is all done purely dynamically, this won’t be a problem…?



Typos Gone Wild: CVE-2024-6779
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● Optimization – if offset & index is known & statically in-bounds, elide check



Typos Gone Wild: CVE-2024-6779
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● Optimization #2 – if offset <= min size, elide mem size comparison

○ Remaining size effective_size subtraction overflow!

<= Cached size of memory[0x100]

<= Min size of memory[0]



Typos Gone Wild: CVE-2024-6779
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● Great, arbitrary index OOB read/write from Wasm memory base :)

● Exploitable?
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● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

● Exploitable? Unexploitable??
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● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

=> With memory64, this is uint64 – fully arbitrary R/W, but the feature is staged…

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

=> On Android, no guard page due to signal safety issues

● Exploitable? Unexploitable?? Exploitable???
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● Great, arbitrary index OOB read/write from Wasm memory base :)

● Not-so-great reasons:

○ Index limited to uint32

=> With memory64, this is uint64 – fully arbitrary R/W, but the feature is staged…

○ Wasm memory padded to 8GB w/ guard page for OOB trapping mechanism

=> On Android, no guard page due to signal safety issues

=> But there’s nothing useful to overwrite?

     It’s allocated after ArrayBuffer PartitionAlloc…

● Exploitable? Unexploitable?? Exploitable??? Unexploitable????
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● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

Man Yue Mo, “Controlled chaos: Predicting object addresses in Chrome (without breaking a sweat),” in POC2022.
* Fixed in https://crrev.com/c/5806587
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● Conditions for Wasm memory to be allocated between V8 cage & PA

○ On Android, address is almost always fixed due to randomization bug* + Zygote

○ Both the V8 Sandbox & V8 cage is allocated with alignment of 4GiB

○ ArrayBuffer PartitionAlloc pool is allocated with alignment of 16GiB

● 75% chance to have a gap between the V8 cage & PartitionAlloc
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○ On any cases, we can probe the layout & determine exploitability w/o crashing

■ Fill up each potential 4GiB (+1) with Wasm memory, OOB read to probe if it’s before PA

wmem1 wmem2 wmem3ArrayBuffer PartitionAlloc wmem4
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● V8 Sandbox:

○ Software fault isolation mechanism to prevent memory corruptions from within the 

sandbox region evolving into arbitrary writes outside of sandbox
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● V8 Sandbox:

○ Software fault isolation mechanism to prevent memory corruptions from within the 

sandbox region evolving into arbitrary writes outside of sandbox

Samuel Groß, “The V8 Heap Sandbox,” in OffensiveCon 2024.
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● Wasm is a goldmine of V8 Sandbox bypasses
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○ What are the common patterns?
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● Key idea:

○ Reference types are represented as full 64bit pointers at:

■ Within a Wasm function

■ Across Wasm function calls – function signature confusion leads to v8sbx bypass!

○ Everything is an object – memory, funcrefs, function tables, etc.

■ Anything that could be modified must not be trusted
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● Wasm is a goldmine of V8 Sandbox bypasses

○ What makes it so vulnerable?

○ What are the common patterns?

● Key idea:

○ Reference types are represented as full 64bit pointers at:

■ Within a Wasm function

■ Across Wasm function calls – function signature confusion leads to v8sbx bypass!

○ Everything is an object – memory, funcrefs, function tables, etc.

■ Anything that could be modified must not be trusted

○ The paradigm shift: V8 sandbox & JS is “userspace”, everything else “kernel”

■ We need to reason about “non-renderer issues” – “double fetch” within v8sbx?

■ “Drivers”, i.e. embedder implementations, which is difficult to reason about from V8
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● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

Classification referenced from Samuel Groß’s “The V8 Heap Sandbox” talk. Some fields are implicitly omitted in the diagram.

WasmTableObject

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …
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● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

Classification referenced from Samuel Groß’s “The V8 Heap Sandbox” talk. Some fields are implicitly omitted in the diagram.

WasmTableObject

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable

length capacity

entry[0].target entry[0].ref

entry[0].sig …

Invariant: entry[i].sig <: table type
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● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

Classification referenced from Samuel Groß’s “The V8 Heap Sandbox” talk. Some fields are implicitly omitted in the diagram.

WasmTableObject

entries current_length

maximum_length uses

raw_type? …

FixedArray

length object[0]?

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable

length capacity

entry[0].target entry[0].ref

entry[0].sig …

Invariant: entry[i].sig <: table type



● Case 1: Code metadata (i.e. signatures) corruption

○ b/348793147: Missing signature check when importing function tables

○ b/350292240: Generic func table runtime typecheck bypass via type info corruption

■ Unfixed, but public as part of exploit chain for “Typos Gone Wild: CVE-2024-6779”

○ b/352689356: Missing signature SBXCHECK() in Turbofan call_ref – wontfix’d

■ Wasm Turbofan expected to be obsolete Soon™

○ b/354408144: Wasm-to-JS wrapper serialized signature corruption

■ Trusted-to-untrusted reference

○ b/354355045: JS-to-Wasm sbxcheck() bypass

■ Trusted|Untrusted type union, fallback to fake untrusted object

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses
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● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses
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Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

length capacity

entry[0].target entry[0].ref

entry[0].sig …



● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

115
Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

length capacity

entry[0].target entry[0].ref

entry[0].sig …



● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

116
Edouard Bochin, Tao Yan, Bo Qu, “Let the Cache Cache and Let the WebAssembly Assemble: Knocking’ on Chrome’s Shell,” in Black Hat USA 2024.

WasmTableObject (A)

entries current_length

maximum_length uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

length capacity

entry[0].target entry[0].ref

entry[0].sig …



● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass
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WasmTableObject (A)

entries 0xfffffffe

0xfffffffe uses

raw_type …

FixedArray

length object[0]

object[1] …

WasmExportedFunction

… …

WasmExportedFunctionData

… …

WasmDispatchTable (B)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

WasmDispatchTable (import A)

1 capacity

entry[0].target entry[0].ref

entry[0].sig …

table.set(0xfffffff9, func)



● Case 2: Untrusted indices

○ b/349502157: Table set SBXCHECK_LT() bypass

○ b/350628675: OOB access from a ProtectedFixedArray

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

118



● Case 3: Broken invariants

○ Similar to what we’ve seen in “Typos Gone Wild: CVE-2024-6779”

● Case 4: Transplantation* / Extraction of trusted handles

○ Replacing / removing references to trusted objects

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses
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● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race
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WasmExportedFunction F

… shared_function_info

WasmExportedFunctionData F

… canonical_type_index

… …

WasmDispatchTable (imports)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

SharedFunctionInfo F

trusted_function_data …
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○ Case 1’ + 4’ – b/349529650: Function import signature check race

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses

121

WasmExportedFunction F

… shared_function_info

WasmExportedFunctionData F

… canonical_type_index

… …

WasmDispatchTable (imports)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

SharedFunctionInfo F

trusted_function_data …

WasmExportedFunction G

… shared_function_info

WasmExportedFunctionData G

… canonical_type_index

… …

SharedFunctionInfo G

trusted_function_data …

MatchesSignature()



● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race
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WasmExportedFunction F

… shared_function_info

WasmExportedFunctionData F

… canonical_type_index

… …

WasmDispatchTable (imports)

length capacity

entry[0].target entry[0].ref

entry[0].sig …

SharedFunctionInfo F

trusted_function_data …

WasmExportedFunction G

… shared_function_info

WasmExportedFunctionData G

… canonical_type_index

… …

SharedFunctionInfo G

trusted_function_data …

MatchesSignature()SetWasmToWasm()



● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

○ Case 3’ – b/352446085: Wasm memory64 bounds check bypass via import race

■ Also seen in “Typos Gone Wild: CVE-2024-6779”
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● Variant: Double fetch / TOCTOU

○ Case 1’ + 4’ – b/349529650: Function import signature check race

○ Case 3’ – b/352446085: Wasm memory64 bounds check bypass via import race

■ Also seen in “Typos Gone Wild: CVE-2024-6779”

● Bugs from new feature extensions?

○ Case 4 – b/356419168: Arbitrary Wasm stack control via JSPI continuation transplant

“All-You-Can-Eat” Wasm-based V8 Sandbox bypasses
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● Firefox?

○ Blatantly wrong subtype validity check for array types: CVE-2024-8385

■ Any array types with different mutability are a subtype of each other??
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● Firefox?

○ Blatantly wrong subtype validity check for array types: CVE-2024-8385

■ Any array types with different mutability are a subtype of each other??

● Safari?

○ WasmGC enabled by default from STP202 – still has a long way to go

■ Many bugs, from obvious type safety violations to JIT compiler bugs: CVE-2024-44221

Going Forward: Other browsers
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● WebAssembly is rapidly expanding:

○ Exception handling with exnref

■ Adds a whole new type hierarchy!

○ JSPI (JS Promise Integration)

■ You can now suspend/resume Wasm functions mid-execution!

○ Memory64

■ Memory/table indices can now be 64bit!

○ … and many more
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■ Adds a whole new type hierarchy!

○ JSPI (JS Promise Integration)

■ You can now suspend/resume Wasm functions mid-execution!

○ Memory64

■ Memory/table indices can now be 64bit!

○ … and many more

● Chrome is growing too:

○ Transition from Turbofan to Turboshaft

■ Already transitioning via V8WasmTurboshaft Finch trial (currently at 50%)

Going Forward: Future targets
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● A bug is not a one-off problem – it’s an indicator of a bigger problem

○ wasm::ValueType anti-pattern is finally almost gone (b/366180605)
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Thank You!
Questions?


